Extensions 1→N→G→Q→1 with N=C56 and Q=C22

Direct product G=NxQ with N=C56 and Q=C22
dρLabelID
C22xC56224C2^2xC56224,164

Semidirect products G=N:Q with N=C56 and Q=C22
extensionφ:Q→Aut NdρLabelID
C56:1C22 = C8:D14φ: C22/C1C22 ⊆ Aut C56564+C56:1C2^2224,103
C56:2C22 = D7xD8φ: C22/C1C22 ⊆ Aut C56564+C56:2C2^2224,105
C56:3C22 = D56:C2φ: C22/C1C22 ⊆ Aut C56564+C56:3C2^2224,109
C56:4C22 = D8:D7φ: C22/C1C22 ⊆ Aut C56564C56:4C2^2224,106
C56:5C22 = D7xSD16φ: C22/C1C22 ⊆ Aut C56564C56:5C2^2224,108
C56:6C22 = D7xM4(2)φ: C22/C1C22 ⊆ Aut C56564C56:6C2^2224,101
C56:7C22 = C7xC8:C22φ: C22/C1C22 ⊆ Aut C56564C56:7C2^2224,171
C56:8C22 = C2xD56φ: C22/C2C2 ⊆ Aut C56112C56:8C2^2224,98
C56:9C22 = C2xC56:C2φ: C22/C2C2 ⊆ Aut C56112C56:9C2^2224,97
C56:10C22 = D7xC2xC8φ: C22/C2C2 ⊆ Aut C56112C56:10C2^2224,94
C56:11C22 = C2xC8:D7φ: C22/C2C2 ⊆ Aut C56112C56:11C2^2224,95
C56:12C22 = C14xD8φ: C22/C2C2 ⊆ Aut C56112C56:12C2^2224,167
C56:13C22 = C14xSD16φ: C22/C2C2 ⊆ Aut C56112C56:13C2^2224,168
C56:14C22 = C14xM4(2)φ: C22/C2C2 ⊆ Aut C56112C56:14C2^2224,165

Non-split extensions G=N.Q with N=C56 and Q=C22
extensionφ:Q→Aut NdρLabelID
C56.1C22 = C8.D14φ: C22/C1C22 ⊆ Aut C561124-C56.1C2^2224,104
C56.2C22 = C7:D16φ: C22/C1C22 ⊆ Aut C561124+C56.2C2^2224,32
C56.3C22 = D8.D7φ: C22/C1C22 ⊆ Aut C561124-C56.3C2^2224,33
C56.4C22 = C7:SD32φ: C22/C1C22 ⊆ Aut C561124+C56.4C2^2224,34
C56.5C22 = C7:Q32φ: C22/C1C22 ⊆ Aut C562244-C56.5C2^2224,35
C56.6C22 = D8:3D7φ: C22/C1C22 ⊆ Aut C561124-C56.6C2^2224,107
C56.7C22 = D7xQ16φ: C22/C1C22 ⊆ Aut C561124-C56.7C2^2224,112
C56.8C22 = Q8.D14φ: C22/C1C22 ⊆ Aut C561124+C56.8C2^2224,114
C56.9C22 = SD16:D7φ: C22/C1C22 ⊆ Aut C561124-C56.9C2^2224,110
C56.10C22 = Q16:D7φ: C22/C1C22 ⊆ Aut C561124C56.10C2^2224,113
C56.11C22 = SD16:3D7φ: C22/C1C22 ⊆ Aut C561124C56.11C2^2224,111
C56.12C22 = D28.C4φ: C22/C1C22 ⊆ Aut C561124C56.12C2^2224,102
C56.13C22 = C7xC8.C22φ: C22/C1C22 ⊆ Aut C561124C56.13C2^2224,172
C56.14C22 = D112φ: C22/C2C2 ⊆ Aut C561122+C56.14C2^2224,5
C56.15C22 = C112:C2φ: C22/C2C2 ⊆ Aut C561122C56.15C2^2224,6
C56.16C22 = Dic56φ: C22/C2C2 ⊆ Aut C562242-C56.16C2^2224,7
C56.17C22 = D56:7C2φ: C22/C2C2 ⊆ Aut C561122C56.17C2^2224,99
C56.18C22 = C2xDic28φ: C22/C2C2 ⊆ Aut C56224C56.18C2^2224,100
C56.19C22 = D7xC16φ: C22/C2C2 ⊆ Aut C561122C56.19C2^2224,3
C56.20C22 = C16:D7φ: C22/C2C2 ⊆ Aut C561122C56.20C2^2224,4
C56.21C22 = C2xC7:C16φ: C22/C2C2 ⊆ Aut C56224C56.21C2^2224,17
C56.22C22 = C28.C8φ: C22/C2C2 ⊆ Aut C561122C56.22C2^2224,18
C56.23C22 = D28.2C4φ: C22/C2C2 ⊆ Aut C561122C56.23C2^2224,96
C56.24C22 = C7xD16φ: C22/C2C2 ⊆ Aut C561122C56.24C2^2224,60
C56.25C22 = C7xSD32φ: C22/C2C2 ⊆ Aut C561122C56.25C2^2224,61
C56.26C22 = C7xQ32φ: C22/C2C2 ⊆ Aut C562242C56.26C2^2224,62
C56.27C22 = C14xQ16φ: C22/C2C2 ⊆ Aut C56224C56.27C2^2224,169
C56.28C22 = C7xC4oD8φ: C22/C2C2 ⊆ Aut C561122C56.28C2^2224,170
C56.29C22 = C7xM5(2)central extension (φ=1)1122C56.29C2^2224,59
C56.30C22 = C7xC8oD4central extension (φ=1)1122C56.30C2^2224,166

׿
x
:
Z
F
o
wr
Q
<